Sunday, February 23, 2025
HomeIran NewsDecline in Iran’s groundwater recharge

Decline in Iran’s groundwater recharge


Jasechko, S. & Perrone, D. Global groundwater wells vulnerable to working dry. Science 372, 418–421 (2021).

ADS 
CAS 
PubMed 

Google Scholar 

Boretti, A. & Rosa, L. Reassessing the projections of the world water growth report. npj Clean. Water 2, 15 (2019).

Google Scholar 

Wada, Y. et al. Global depletion of groundwater assets. Geophys. Res. Lett. 37, L20402 (2010).

ADS 

Google Scholar 

Gleeson, T., Wada, Y., Bierkens, M. F. & Van Beek, L. P. Water stability of worldwide aquifers revealed by groundwater footprint. Nature 488, 197–200 (2012).

ADS 
CAS 
PubMed 

Google Scholar 

Dalin, C., Wada, Y., Kastner, T. & Puma, M. J. Groundwater depletion embedded in worldwide meals commerce. Nature 543, 700–706 (2017).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Döll, P. et al. Global-scale evaluation of groundwater depletion and associated groundwater abstractions: combining hydrological modeling with data from effectively observations and GRACE satellites. Water Resour. Res. 50, 5698–5720 (2014).

ADS 

Google Scholar 

Maghrebi, M. et al. Iran’s groundwater hydrochemistry. Earth Space Sci. 8, e2021EA001793 (2021).

ADS 

Google Scholar 

Noori, R. et al. Anthropogenic depletion of Iran’s aquifers. Proc. Natl Acad. Sci. USA 118, e2024221118 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar 

Maghrebi, M. et al. Anthropogenic decline of historical, sustainable water programs: qanats. Groundwater 61, 139–146 (2023).

CAS 

Google Scholar 

De Vries, J. J. & Simmers, I. Groundwater recharge: an summary of processes and challenges. Hydrogeol. J. 10, 5–17 (2002).

ADS 

Google Scholar 

Jasechko, S. et al. The pronounced seasonality of worldwide groundwater recharge. Water Resour. Res. 50, 8845–8867 (2014).

ADS 

Google Scholar 

Herbert, C. & Döll, P. Global evaluation of present and future groundwater stress with a deal with transboundary aquifers. Water Resour. Res. 55, 4760–4784 (2019).

ADS 

Google Scholar 

Wartenburger, R. et al. Evapotranspiration simulations in ISIMIP2a—analysis of spatio-temporal traits with a complete ensemble of impartial datasets. Environ. Res. Lett. 13, 75001 (2018).

Google Scholar 

Reinecke, R. et al. Uncertainty of simulated groundwater recharge at completely different international warming ranges: a global-scale multi-model ensemble examine. Hydrol. Earth Syst. Sci. 25, 787–810 (2021).

ADS 
CAS 

Google Scholar 

Scanlon, B. R., Healy, R. W. & Cook, P. G. Choosing acceptable methods for quantifying groundwater recharge. Hydrogeol. J. 10, 18–39 (2002).

ADS 
CAS 

Google Scholar 

Ahmadi, T. et al. Estimation of groundwater recharge utilizing numerous strategies in Neishaboor Plain, Iran. Groundwater Modeling and Management below Uncertainty (pp. 9–15. CRC Press, Taylor & Francis Group, London, UK, 2012).

Google Scholar 

Arabi Javanmard, Z. & Jafari, H. Estimating recharge to the Aleshtar aquifer in Lorestan province. J. Water Soil 33, 37–49 (2019).

Google Scholar 

Pahlevani Majdabady, M., Rasoulzadeh, A., Kanooni, A. & Ahmadzadeh, G. Estimation of groundwater recharge originating from agricultural irrigation and rainfall in Shyramyn plain, Iran. Irrig. Drain. 69, 107–120 (2020).

Google Scholar 

Babaei, M. & Ketabchi, H. Estimation of groundwater recharge fee utilizing a distributed mannequin (case examine of Rafsanjan aquifer, Kerman province). Iran. J. Soil Water Res. 51, 1457–1468 (2020).

Google Scholar 

Moosavi, V. & Hayatzadeh, M. Groundwater recharge modeling utilizing semi-distributed SWAT Model, case examine: Marvast Plain. Watershed Eng. Manag. 14, 282–298 (2022).

Google Scholar 

Mohammadi, Z., Salimi, M. & Faghih, A. Assessment of groundwater recharge in a semi-arid groundwater system utilizing water stability equation, southern Iran. J. Afr. Earth Sci. 95, 1–8 (2014).

ADS 

Google Scholar 

Zamani, T., Karimi, H., Tavakoli, M. & Alimoradi, S. Investigation the elements affecting the groundwater drawdown in Mehran Plain. Ilam. Hydrogeol. 2, 17–28 (2018).

Google Scholar 

Aghazadeh, N., Chitsazan, M. & Mirzaee, Y. The potential and precise city aquifer recharge and website choice for synthetic recharge utilizing GIS and AHP strategies (case examine: Urmia city aquifer). J. Adv. Appl. Geol. 32, 168–179 (2019).

Google Scholar 

Zareian, M. J. & Eslamian, S. Groundwater withdrawal adjustment based mostly on adjustments in groundwater stability elements (a case examine: an arid area in central Iran). Arab. J. Geosci. 14, 1822 (2021).

Google Scholar 

IPRC (Iranian Parliament Research Center). Challenges of unsustainable groundwater withdrawal in Iran: present scenario and land subsidence disaster (accessed 08 June 2023) https://rc.majlis.ir/fa/report/show/1773166 (2023).

Maghsoudi, R., Javadi, S., Shourian, M. & Golmohammadi, G. Determining the optimum aquifer exploitation below synthetic recharge utilizing the mix of numerical fashions and particle swarm optimization. Hydrology 10, 100 (2023).

Google Scholar 

Ashraf, S., Nazemi, A. & AghaKouchak, A. Anthropogenic drought dominates groundwater depletion in Iran. Sci. Rep. 11, 9135 (2021).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Uhl, A. et al. Making waves: pulling the plug—local weather change results will flip gaining into dropping streams with detrimental results on groundwater high quality. Water Res. 220, 118649 (2022).

CAS 
PubMed 

Google Scholar 

Moshir Panahi, D. et al. Variability and alter within the hydro-climate and water assets of Iran over a latest 30-year interval. Sci. Rep. 10, 7450 (2020).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Dripps, W. R. & Bradbury, Okay. R. The spatial and temporal variability of groundwater recharge in a forested basin in northern Wisconsin. Hydrol. Process. 24, 383–392 (2010).

Google Scholar 

Wu, W. Y. et al. Divergent results of local weather change on future groundwater availability in key mid-latitude aquifers. Nat. Commun. 11, 3710 (2020).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Lone, S. A. et al. Meltwaters dominate groundwater recharge in chilly arid desert of Upper Indus River Basin (UIRB), western Himalayas. Sci. Total Environ. 786, 147514 (2021).

ADS 
CAS 

Google Scholar 

Safarianzengir, V. et al. Monitoring and evaluation of adjustments within the depth and floor space snow of the Mountains in Iran utilizing distant sensing knowledge. J. Indian Soc. Remote Sens. 48, 1479–1494 (2020).

Google Scholar 

Araghi, A. & Mousavi-Baygi, M. Variability in snowfall/complete precipitation-day ratio in Iran. Theor. Appl. Climatol. 140, 547–558 (2020).

ADS 

Google Scholar 

Emami, F. & Koch, M. Modeling the affect of local weather change on water availability within the Zarrine River Basin and influx to the Boukan Dam. Iran. Clim. 7, 51 (2019).

Google Scholar 

Habibi, M., Babaeian, I. & Schöner, W. Changing causes of drought within the Urmia Lake Basin–growing affect of evaporation and disappearing snow cowl. Water 13, 3273 (2021).

Google Scholar 

Saemian, P. et al. How a lot water did Iran lose over the past 20 years? J. Hydrol. Reg. Stud. 41, 101095 (2022).

Google Scholar 

Maghrebi, M. et al. Spatiotemporal adjustments in Iranian rivers’ discharge. Elem. Sci. Anth 11, 00002 (2023).

Google Scholar 

Malekmohammadi, B., Uvo, C. B., Moghadam, N. T., Noori, R. & Abolfathi, S. Environmental danger evaluation of wetland ecosystems utilizing Bayesian perception networks. Hydrology 10, 16 (2023).

Google Scholar 

Maghrebi, M., Noori, R. & AghaKouchak, A. Iran: Renovated irrigation community deepens water disaster. Nature 618, 238 (2023).

CAS 
PubMed 

Google Scholar 

Van Emmerik, T. H. M. et al. Socio-hydrologic modeling to grasp and mediate the competitors for water between agriculture growth and environmental well being: Murrumbidgee River basin, Australia. Hydrol. Earth Syst. Sci. 18, 4239–4259 (2014).

ADS 

Google Scholar 

Motagh, M. et al. Land subsidence in Iran brought on by widespread water reservoir overexploitation. Geophys. Res. Lett. 35, L16403 (2008).

ADS 

Google Scholar 

Haghighi, M. H. & Motagh, M. Ground floor response to steady compaction of aquifer system in Tehran, Iran: outcomes from a long-term multi-sensor InSAR evaluation. Remote Sens. Environ. 221, 534–550 (2019).

ADS 

Google Scholar 

Negahdary, M. Shrinking aquifers and land subsidence in Iran. Science 376, 1279–1279 (2022).

ADS 
PubMed 

Google Scholar 

Sadeghi, H. et al. Assessing the vulnerability of Iran to subsidence hazard utilizing a hierarchical FUCOM-GIS framework. Remote Sens. Appl. Soc. Environ. 31, 100989 (2023).

Google Scholar 

Madani, Okay., AghaKouchak, A. & Mirchi, A. Iran’s socio-economic drought: challenges of a water-bankrupt nation. Iran. Stud. 49, 997–1016 (2016).

Google Scholar 

Shirvani, Z., Abdi, O., Buchroithner, M. F. & Pradhan, B. Analysing spatial and statistical dependencies of deforestation affected by residential progress: Gorganrood Basin, Northeast Iran. Land Degrad. Dev. 28, 2176–2190 (2017).

Google Scholar 

Habibi, S., Basirat, M., & Razavi, M.H. Towards nationwide city coverage in I.R. of Iran. In: Developing National Urban Policies, 231–254, https://doi.org/10.1007/978-981-15-3738-7_9 (Springer, Singapore, 2020).

Sadeghi, R., Abbasi-Shavazi, M.J., & Shahbazin, S. Internal migration in Iran. In: Internal Migration within the Countries of Asia, 295–317, https://doi.org/10.1007/978-3-030-44010-7_15 (Springer, Cham. 2020).

Eskandari Dameneh, H. et al. Desertification of Iran within the early twenty-first century: evaluation utilizing local weather and vegetation indices. Sci. Rep. 11, 20548 (2021).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Emadodin, I., Reinsch, T. & Taube, F. Drought and desertification in Iran. Hydrology 6, 66 (2019).

Google Scholar 

Olen, S. M. Water chapter in Iran. Nat. Sustain. 4, 924–924 (2021).

Google Scholar 

IWRMC (Iran Water Resources Management Company). Water finances report of the Iran examine areas (accessed 15 October 2022). Ministry of Energy, Tehran, Iran (2018).

Schicht, R.J. & Walton, W.C. Hydrologic budgets for 3 small watersheds in Illinois. Illinois State Water Survey, Report of Investigation 40, https://www.isws.illinois.edu/pubdoc/RI/ISWSRI-40.pdf (1961).

Nabavi, E. Failed insurance policies, falling aquifers: unpacking groundwater overabstraction in Iran. Water Altern. 11, 699–724 (2018).

Google Scholar 

AghaKouchak, A. et al. Aral Sea syndrome desiccates Lake Urmia: name for motion. J. Great Lakes Res. 41, 307–311 (2015).

Google Scholar 

Sen, P. Okay. Estimates of the regression coefficient based mostly on Kendall’s tau. J. Am. Stat. Assoc. 63, 1379–1389 (1968).

MathSciWeb 
MATH 

Google Scholar 

Mann, H. B. Nonparametric assessments in opposition to pattern. Econometrica 13, 245–259 (1945).

MathSciWeb 
MATH 

Google Scholar 

Kendall, M. G. Rank correlation strategies (Oxford University Press, 1975).

MAKESENS 1. Mann-Kendall check and Sen’s slope estimates for pattern of annual knowledge. Finnish Meteorological Institute. https://en.ilmatieteenlaitos.fi/makesens (2002).



Source hyperlink

RELATED ARTICLES

LEAVE A REPLY

Please enter your comment!
Please enter your name here

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Most Popular