Jasechko, S. & Perrone, D. Global groundwater wells vulnerable to working dry. Science 372, 418–421 (2021).
Google Scholar
Boretti, A. & Rosa, L. Reassessing the projections of the world water growth report. npj Clean. Water 2, 15 (2019).
Wada, Y. et al. Global depletion of groundwater assets. Geophys. Res. Lett. 37, L20402 (2010).
Google Scholar
Gleeson, T., Wada, Y., Bierkens, M. F. & Van Beek, L. P. Water stability of worldwide aquifers revealed by groundwater footprint. Nature 488, 197–200 (2012).
Google Scholar
Dalin, C., Wada, Y., Kastner, T. & Puma, M. J. Groundwater depletion embedded in worldwide meals commerce. Nature 543, 700–706 (2017).
Google Scholar
Döll, P. et al. Global-scale evaluation of groundwater depletion and associated groundwater abstractions: combining hydrological modeling with data from effectively observations and GRACE satellites. Water Resour. Res. 50, 5698–5720 (2014).
Google Scholar
Maghrebi, M. et al. Iran’s groundwater hydrochemistry. Earth Space Sci. 8, e2021EA001793 (2021).
Google Scholar
Noori, R. et al. Anthropogenic depletion of Iran’s aquifers. Proc. Natl Acad. Sci. USA 118, e2024221118 (2021).
Google Scholar
Maghrebi, M. et al. Anthropogenic decline of historical, sustainable water programs: qanats. Groundwater 61, 139–146 (2023).
Google Scholar
De Vries, J. J. & Simmers, I. Groundwater recharge: an summary of processes and challenges. Hydrogeol. J. 10, 5–17 (2002).
Google Scholar
Jasechko, S. et al. The pronounced seasonality of worldwide groundwater recharge. Water Resour. Res. 50, 8845–8867 (2014).
Google Scholar
Herbert, C. & Döll, P. Global evaluation of present and future groundwater stress with a deal with transboundary aquifers. Water Resour. Res. 55, 4760–4784 (2019).
Google Scholar
Wartenburger, R. et al. Evapotranspiration simulations in ISIMIP2a—analysis of spatio-temporal traits with a complete ensemble of impartial datasets. Environ. Res. Lett. 13, 75001 (2018).
Reinecke, R. et al. Uncertainty of simulated groundwater recharge at completely different international warming ranges: a global-scale multi-model ensemble examine. Hydrol. Earth Syst. Sci. 25, 787–810 (2021).
Google Scholar
Scanlon, B. R., Healy, R. W. & Cook, P. G. Choosing acceptable methods for quantifying groundwater recharge. Hydrogeol. J. 10, 18–39 (2002).
Google Scholar
Ahmadi, T. et al. Estimation of groundwater recharge utilizing numerous strategies in Neishaboor Plain, Iran. Groundwater Modeling and Management below Uncertainty (pp. 9–15. CRC Press, Taylor & Francis Group, London, UK, 2012).
Arabi Javanmard, Z. & Jafari, H. Estimating recharge to the Aleshtar aquifer in Lorestan province. J. Water Soil 33, 37–49 (2019).
Pahlevani Majdabady, M., Rasoulzadeh, A., Kanooni, A. & Ahmadzadeh, G. Estimation of groundwater recharge originating from agricultural irrigation and rainfall in Shyramyn plain, Iran. Irrig. Drain. 69, 107–120 (2020).
Babaei, M. & Ketabchi, H. Estimation of groundwater recharge fee utilizing a distributed mannequin (case examine of Rafsanjan aquifer, Kerman province). Iran. J. Soil Water Res. 51, 1457–1468 (2020).
Moosavi, V. & Hayatzadeh, M. Groundwater recharge modeling utilizing semi-distributed SWAT Model, case examine: Marvast Plain. Watershed Eng. Manag. 14, 282–298 (2022).
Mohammadi, Z., Salimi, M. & Faghih, A. Assessment of groundwater recharge in a semi-arid groundwater system utilizing water stability equation, southern Iran. J. Afr. Earth Sci. 95, 1–8 (2014).
Google Scholar
Zamani, T., Karimi, H., Tavakoli, M. & Alimoradi, S. Investigation the elements affecting the groundwater drawdown in Mehran Plain. Ilam. Hydrogeol. 2, 17–28 (2018).
Aghazadeh, N., Chitsazan, M. & Mirzaee, Y. The potential and precise city aquifer recharge and website choice for synthetic recharge utilizing GIS and AHP strategies (case examine: Urmia city aquifer). J. Adv. Appl. Geol. 32, 168–179 (2019).
Zareian, M. J. & Eslamian, S. Groundwater withdrawal adjustment based mostly on adjustments in groundwater stability elements (a case examine: an arid area in central Iran). Arab. J. Geosci. 14, 1822 (2021).
IPRC (Iranian Parliament Research Center). Challenges of unsustainable groundwater withdrawal in Iran: present scenario and land subsidence disaster (accessed 08 June 2023) https://rc.majlis.ir/fa/report/show/1773166 (2023).
Maghsoudi, R., Javadi, S., Shourian, M. & Golmohammadi, G. Determining the optimum aquifer exploitation below synthetic recharge utilizing the mix of numerical fashions and particle swarm optimization. Hydrology 10, 100 (2023).
Ashraf, S., Nazemi, A. & AghaKouchak, A. Anthropogenic drought dominates groundwater depletion in Iran. Sci. Rep. 11, 9135 (2021).
Google Scholar
Uhl, A. et al. Making waves: pulling the plug—local weather change results will flip gaining into dropping streams with detrimental results on groundwater high quality. Water Res. 220, 118649 (2022).
Google Scholar
Moshir Panahi, D. et al. Variability and alter within the hydro-climate and water assets of Iran over a latest 30-year interval. Sci. Rep. 10, 7450 (2020).
Google Scholar
Dripps, W. R. & Bradbury, Okay. R. The spatial and temporal variability of groundwater recharge in a forested basin in northern Wisconsin. Hydrol. Process. 24, 383–392 (2010).
Wu, W. Y. et al. Divergent results of local weather change on future groundwater availability in key mid-latitude aquifers. Nat. Commun. 11, 3710 (2020).
Google Scholar
Lone, S. A. et al. Meltwaters dominate groundwater recharge in chilly arid desert of Upper Indus River Basin (UIRB), western Himalayas. Sci. Total Environ. 786, 147514 (2021).
Google Scholar
Safarianzengir, V. et al. Monitoring and evaluation of adjustments within the depth and floor space snow of the Mountains in Iran utilizing distant sensing knowledge. J. Indian Soc. Remote Sens. 48, 1479–1494 (2020).
Araghi, A. & Mousavi-Baygi, M. Variability in snowfall/complete precipitation-day ratio in Iran. Theor. Appl. Climatol. 140, 547–558 (2020).
Google Scholar
Emami, F. & Koch, M. Modeling the affect of local weather change on water availability within the Zarrine River Basin and influx to the Boukan Dam. Iran. Clim. 7, 51 (2019).
Habibi, M., Babaeian, I. & Schöner, W. Changing causes of drought within the Urmia Lake Basin–growing affect of evaporation and disappearing snow cowl. Water 13, 3273 (2021).
Saemian, P. et al. How a lot water did Iran lose over the past 20 years? J. Hydrol. Reg. Stud. 41, 101095 (2022).
Maghrebi, M. et al. Spatiotemporal adjustments in Iranian rivers’ discharge. Elem. Sci. Anth 11, 00002 (2023).
Malekmohammadi, B., Uvo, C. B., Moghadam, N. T., Noori, R. & Abolfathi, S. Environmental danger evaluation of wetland ecosystems utilizing Bayesian perception networks. Hydrology 10, 16 (2023).
Maghrebi, M., Noori, R. & AghaKouchak, A. Iran: Renovated irrigation community deepens water disaster. Nature 618, 238 (2023).
Google Scholar
Van Emmerik, T. H. M. et al. Socio-hydrologic modeling to grasp and mediate the competitors for water between agriculture growth and environmental well being: Murrumbidgee River basin, Australia. Hydrol. Earth Syst. Sci. 18, 4239–4259 (2014).
Google Scholar
Motagh, M. et al. Land subsidence in Iran brought on by widespread water reservoir overexploitation. Geophys. Res. Lett. 35, L16403 (2008).
Google Scholar
Haghighi, M. H. & Motagh, M. Ground floor response to steady compaction of aquifer system in Tehran, Iran: outcomes from a long-term multi-sensor InSAR evaluation. Remote Sens. Environ. 221, 534–550 (2019).
Google Scholar
Negahdary, M. Shrinking aquifers and land subsidence in Iran. Science 376, 1279–1279 (2022).
Google Scholar
Sadeghi, H. et al. Assessing the vulnerability of Iran to subsidence hazard utilizing a hierarchical FUCOM-GIS framework. Remote Sens. Appl. Soc. Environ. 31, 100989 (2023).
Madani, Okay., AghaKouchak, A. & Mirchi, A. Iran’s socio-economic drought: challenges of a water-bankrupt nation. Iran. Stud. 49, 997–1016 (2016).
Shirvani, Z., Abdi, O., Buchroithner, M. F. & Pradhan, B. Analysing spatial and statistical dependencies of deforestation affected by residential progress: Gorganrood Basin, Northeast Iran. Land Degrad. Dev. 28, 2176–2190 (2017).
Habibi, S., Basirat, M., & Razavi, M.H. Towards nationwide city coverage in I.R. of Iran. In: Developing National Urban Policies, 231–254, https://doi.org/10.1007/978-981-15-3738-7_9 (Springer, Singapore, 2020).
Sadeghi, R., Abbasi-Shavazi, M.J., & Shahbazin, S. Internal migration in Iran. In: Internal Migration within the Countries of Asia, 295–317, https://doi.org/10.1007/978-3-030-44010-7_15 (Springer, Cham. 2020).
Eskandari Dameneh, H. et al. Desertification of Iran within the early twenty-first century: evaluation utilizing local weather and vegetation indices. Sci. Rep. 11, 20548 (2021).
Google Scholar
Emadodin, I., Reinsch, T. & Taube, F. Drought and desertification in Iran. Hydrology 6, 66 (2019).
Olen, S. M. Water chapter in Iran. Nat. Sustain. 4, 924–924 (2021).
IWRMC (Iran Water Resources Management Company). Water finances report of the Iran examine areas (accessed 15 October 2022). Ministry of Energy, Tehran, Iran (2018).
Schicht, R.J. & Walton, W.C. Hydrologic budgets for 3 small watersheds in Illinois. Illinois State Water Survey, Report of Investigation 40, https://www.isws.illinois.edu/pubdoc/RI/ISWSRI-40.pdf (1961).
Nabavi, E. Failed insurance policies, falling aquifers: unpacking groundwater overabstraction in Iran. Water Altern. 11, 699–724 (2018).
AghaKouchak, A. et al. Aral Sea syndrome desiccates Lake Urmia: name for motion. J. Great Lakes Res. 41, 307–311 (2015).
Sen, P. Okay. Estimates of the regression coefficient based mostly on Kendall’s tau. J. Am. Stat. Assoc. 63, 1379–1389 (1968).
Google Scholar
Mann, H. B. Nonparametric assessments in opposition to pattern. Econometrica 13, 245–259 (1945).
Google Scholar
Kendall, M. G. Rank correlation strategies (Oxford University Press, 1975).
MAKESENS 1. Mann-Kendall check and Sen’s slope estimates for pattern of annual knowledge. Finnish Meteorological Institute. https://en.ilmatieteenlaitos.fi/makesens (2002).